If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3n^2)+12n=0
a = 3; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·3·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*3}=\frac{-24}{6} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*3}=\frac{0}{6} =0 $
| 3b=15/6 | | 30+10x=-10 | | 4x-9x+6=-5x+6 | | x^2−12x+36=25 | | 0=0.95^x | | 4(2x+3)+3(2x+5)=10x+45 | | 0=0.95x | | .8x+5=0.2(40-1x) | | 4x+13=-9-3(x+9 | | 180(x-2)=1800 | | F(4)=3/4x | | 3(10-4x)=-3(6+2x) | | 5(3x+1)+2(2x+3)=18x+24 | | x÷3.2=8.5 | | -4a+7(3a+2)=150 | | 20-3y=18 | | -16x^2+256x+10=0 | | xx1.5= | | 3(2x+2)+4(3x+1)=16x+28 | | 3x-7-9x+17=46 | | 40+5x-30=180 | | 6.5=1.3y | | p/7-12.6=8 | | x^2+9x-55=0 | | 5.4/7=27/x | | X=100-y^2 | | 9n=68=7n=2(n-2) | | 26+7x=-30 | | 2(x-5)+7=1x+8 | | 8.5/1.2=t/6.5 | | 4(5x+1=-16 | | X+x^2=24 |